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Abstract

Great strides have been made in recent years
in the analysis of transonic flows past wings and
bodies, and the initial extensions to wing-body
combinations, helicopter rotors, and internal flow
through rotating turbomachinery have been announced.
Although the methods are too numerous and diverse
to permit detailed description, the salient fea-
tures and results of the more significant are
reviwed.

I. Introduction

With the propsect of efficient transonic flight
afforded by the development of supercritical air-
0ils providing the motivation, with the results
1-5) of a previous era extending from about 15 to
25 years ago providing the foundation, and with an

enhanced computational capability providing the
means, enormous progress in transonic flow analy-
sis is currently being made. During this decade,
several nevw methods particularly adapted for use
with advanced computers have been developed to
calculate flows about increasingly complex aero-
dynamic configurations. These techniques are not
limited to the small disturbance theory that formed
the basis for most of the earlier work, but apply
also to (a) the complete potential equation for
irrotational flow, (b) the Euler equations for
general inviscid flow, and (c¢) even the Navier-
Stokes equations for viscous flow. Some of the
methods, such as the numerical time-dependent
procedures, have been applied to all levels of
description. Others, as the hodograph, are re-
stricted to two-dimensional steady flow governed
by either the complete potential equation or its
small disturbance counterpart. Still others, as
the integral equation method, have broader poten-
tialities, but are presently developed primarily
for the small disturbance equation. As might be
expected, most methods have been applied to the
small disturbance formulation and fewest to the
Navier-Stokes equations. Under favorable circum-
stances, the various methods yield similar results,
with the effects of viscosity being confined to
limited regions, so that the results of the small
disturbance theory agree with those of the more
accurate theories. BSome of the differences, more-
over, stem directly from differences in computa-
tional details such as mesh size, order of accu~
racy of the difference algorithm, etc., and could
be reduced at the expense of greater computing
time or with the development of more effective
algorithms.

Because the volume of material is so large, and
fgfil nce can be made to several excellent reviews
= as well as the original papers, our approach
here is to provide a broad overview by combining
brief accounts of the theoretical basis of the
various methods followed by a presentation and
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discussion of significant results, usually obtained
by more than one method. We start with two-dimen-
sional flows, for which the number and variety of
methods is greatest, and with the Navier-Stokes
representation so that the initial results presented
will provide a standard with which the following
approximate theories can be judged. Three~
dimensional flows are discussed subsequently.

II. Two-Dimensional Flow

Although the majority of analysis has been
directed toward an inviscid level of approximation,
transonic flows are often highly influenced by
viscous phenomena, particularly shock-induced
boundary-layer separation. The most complete anal-
ysis of such a flow is that of Diewert (12,13) who
employs the finite volume method to solve the time-
dependent, Reynolds-averaged Navier-Stokes equa-
tions which, written in integral form, are
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in which p 1is Qensity U and W are velocity
components and iy and i, are unit vectors parallel
to the x and z axes, E = e + (U% + V?)/2 is total
energy per unit volume, K is thermal conductivity,
YT 1is temperature gradient, ¢ and T are normal and
shear stresses, and i is a unit normal vector.

In addition to ordinary viscous stresses in T,
Diewert also includes turbulent Reynolds stresses
estimated using four different algebraic eddy
viscosity models. If the viscous and Reynolds
stresses are disregard, Eq. (1) reduces to the
integral form of the Euler equations for inviscid

flow,
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The integral forms are appropriate for the
finite volume method used by Diewert for viscous
flow and also by Rizzi(ll) for inviscid flow; but
other methods are usually derived from the



corresponding differential equations. The Euler
equations, for example, are as follows when written
in conservation form to include the shock relations
directly
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Since these equations are difficult to solve,
they are often approximated by assuming the flow
to be isentropic. This is correct without approxi-
mation for flows which are continuous, i.e., shock-
free, and a good approximation for flows with shock
waves if they are not too strong. Under these
circumstances,
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where Yy = cp/cv is the ratio of specific heats
at constant volume and pressure, s is entropy,
and subscript ®© refers to free-stream conditions.
Then Eq. (3) reduces to
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Magnus and Yoshihara have introduced time-
dependent numerical methods to transonic analysis
by solving these equations.

A related assumption, which is also exact for
shock-free flow and a good approximation if the
shock waves are not too strong, is that the flow
is irrotational. There then exists a velocity
potential ¢ related to the velocity by
Q= Y@ that satisfies
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where a = [ag - (Y--l)q2/2]1/2 is the local

speed of sound, and a, 1is the stagnation speed
of sound. When applied to steady flow so that the
time derivatives vanish, Eq. (6) is of elliptic
type where the local Mach number M= |Q|/a < 1,
and hyperbolic type where M = |2]/a > 1. Both the
hodograph and finite difference relaxation methods
have been used extensively to solve this equation.

Most transonic analysis both past and present
has, however, been based on a small disturbance
approximation to Eq. (6). For flow with free~
stream velocity Qe = fow past a thin airfoil
aligned approximately with the x axis, a pertur-
bation velocity potential ¢ = ¢ - Uox can be
introduced and shown to satisfy
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For Mx = Up/aw # 1, a number of alternatives
exist for k, but the widely used expression
k = (y+1)M2/Uo provides a good all-around
compromise,

Equations (1) through (7) must be supplemented
by boundary condi“ions and other relations to speci-
fy both a mathematicel problem corresponding to a
physical application and a unique solution. Bound-
ary conditions must describe conditions at infinity
and at the airfoil surface. With Eq. (1), the
velocity must satisfy the no-slip condition at the
airfoil surface; whereas only the normal component
must match that of the airfoil surface with Tgs.(2)
through (7). With Eq. (7), it is customary to
linearize the boundary condition and transfer it

to the x axis. Thus,
Ly (2,1
(¢Z)Z=0 T Ye \3x U, 3t ) (8)
for an airfoil having ordinates 2%(x,t). Similarly,

the exact Bernmoulli equation is used with Eq. (6),
whereas an approximation
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is normally used with Eq. (7). Equations (1)
through (5) do not need supplementary relations
for shock waves, but Egs. (6) and (7) do. To com~
plete the specification for a lifting airfoil, it
is also necessary to impose the Kutta condition or
some counterpart.

Of the many methods for solving steady transonic
flow problems, the hodograph method is unique in
that it depends on a transformation that linearizes
the governing equation without approximation by
interchanging the dependent and independent vari-
ables. In this way, the steady-state form of Eq.
(6) transforms to

(a2 - U? - 2UW ¢+ (a? -w2)4>Ww =0 (10)

and its small disturbance counterpart, Eq. (7), to

(l-Mi—ku)¢W+¢uu =0 (11)

in which ¢ is the Legendre potential related to
the coordinates by ¢, = x and = z. The Jacobian
of the transformation, J = wi(M%-1+ku)-uf in
the case of Eq. (11), cannot vanish where the flow
is subsonic, but may vanish where it is supersonic,
thereby signifying an inconvenient multiple mapping
in the hodograph plane of a single point in the
physical plane. As a result, use of this method

is usually confined to the subsonic region and a
limited part of the supersonic region unless the
latter is small as at slightly supercritical Mach
numbers. The remainder of the solution is calcu-~
lated by another method, such as characteristics

or finite differences. The hodograph method was
used extensively in the early development of tran-
sonic flow theory(2,4), but difficulties in imposing
boundary conditions for an airfoil of specified
shape restricted its usefulness. It has come into
a new era of significance in the design of shock-
free airfoils for which it is particularly well
suited.



Two methods of solving the hodograph equations
are curre t1¥ predominant. That of Nieuwland(16),
Takahashi‘1T), and Boerstoel{18) relies on function
theory and integral transforms; that of Bauer,
Garabedian, and Korn(19.,20) is based on analytical
continuation into the complex domain so that the
solution can be obtained by solving initial value
problems. Both methods culminate with extensive
numerical computations.

The first method to be developed for shocked
transonic flow that depends intrinsically on the
modern electronic computer is the time~dependent
method of Magnus and Yoshihara(15,21,22) 1t
applies a modified Lax-Wendroff difference scheme
to Eq. (5) to compute from a knowledge of p, U,
and W at one time new values for a slightly later
time. Repetitive application provides a time
history of the development of the flow from an
assumed initial state. Solutions for steady flow
are obtained by imposing steady boundary condi-
tions and carrying the calculations sufficiently
forward in time for the transients to disappear,
characteristically a costly process.

Relaxation methods-were used in the early tran-
sonic studies of Emmons(23) ip physical variebles
and Vincenti and Wagoner 24,25) in hodograph vari-
ables, but modern ap%lications derive directly
from Murman and Cole(26) who introduced the use of
different difference expressions in the subsonic
and supersonic regions in conformity with the
respective domains of influence. Thé procedure
was initially applied to Eq. (10) in which ¢,,
is approximated by centered differences; and ¢x
and ¢xx are represented by centered differences
in regions of subsonic flow and by one-sided up-
wind differences in regions of supersonic flow.
The resulting large set of algebraic equations
was solved numerically using a successive line
overrelaxation (SLOR) procedure.

It was soon recognized that the use of only
two types of operators for ¢, and ¢ was insuf-
ficient since difficulties arose at the sonic line
and shock wave where transitions between the two
forms had to be made. The problem was resolved
by introducing a sonic finite difference operator
corresponding to the centered-difference expression
for ¢,, and a shock operator corresponding to
the sum of the subsonic and supersonic operators.
The latter when applied to the steady-state form
of Eg. (7) rewritten in conservation form

1 - M - 21 o+ =

(- M2 - (6/2)021, + (8)), = 0 (12)
results in substantial improvement of the calcu-
lated changes across a shock wave(27), Presently,

two types of differencing procedures are widely
used with regard to the small disturbance equa-
tion. To distinguish them, those employing the
shock point operator (SP0), which assures conser-
vation of mass at shock points, are designated
FCR (fully conservative relaxation); while those
which do not employ the SPO are termed NCR (not
fully conservative relaxation). Further compli-
cations arise when the method is applied to the
complete potential Eq. (6) specialized to steady
flow. The centerline of the Mach forecone region
of dependence in supersonic flow is no longer
parallel to the x axis, but is in the local
direction of the streamlines. The calculations
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fail to converge if the differencing is done in

the same way as in the small disturbance theory
since the region of dependence of the differencing
scheme does not always include that of the differen-
tial equation. However, Jameson(28) showed that
convergence could be achieved if the finite diff-
erence elements were rotated to allow for the

change in direction.

Improvements have also been made in devising
more efficient algorithms for solving the large set
of algebraic equations provided by the finite diff-
erence procedure. The SLOR method employed origi-
nally has been sup lementﬁd by more efficient
procedures(6a8’99l »29,30 , and further advances
exploiting steadily improving computer capabilities
are to be anticipated.

The integral eguation method, stemming from
oswatitsch{31l) and Spreiter and Alksne(32), was
the first method capable of providing results with
embedded shock waves for supercritical flows. In
this method, Green's theorem is used to transform
the steady-state form of Eq. (7) into a nonlinear
integral equation

- _,_vaz_iffif_ (-2 - (5-7)2
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vhere x = x, 2 = (1 - Mi)]/zz, U= Wy, =
ku/(1-M2), and uj, represents the solution of

Eq. (7) with the nonlinear and time-derivative
terms omitted. Originally, the singularity at

the field point where u is to be evaluated was
enclosed by an infinitesimal rectangle having a
ratio A of height to width of infinity, in which
case v = 1/2. Nixon and Hancock(33) have subse-
quently obtained v = 1/4 by enclosing the same
point by aﬁ infinitesimal circle. Ogana and
Spreiter(3 ) have investigated this matter further
by enclosing the field point in an infintesimal
rectangle of arbitrary A, for which v = (1/7)
arctan A. This accounts for the earlier results
since v = 1/2 when A = ®, and v = 1/b when A = 1.
These differences are somewhat illusory, however,
since the doublet integral is semi~convergent and
its value depends on X in such a way that the
sum of the last two terms of Eq. (13) is indepen-
dent of the shape of the contour.

Solutions of Eq. (13) were sought initially by
introduction of a velocity profile f of the form
u(x,z) = u(x,0)f(x,2,0,-0,2) so that the doudble
integral could be approximated by a single integral
and solutions could be obtained with a modest
amount of hand computation 32,35), Although this
method has substantial merit(36), the trend(33,37)
is to direct numerical solution. Nixon and Hancock

33) have shown, in addition, that a notable
improvement for the vicinity of the leading edge
may be achieved by using a modified ﬁL obtained
by replacing the boundary condition of Eg. (8)
with

) az
x'z=Z dx
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In addition to the above methods that may be
refined systematically to provide an essentially
exact solution within the framework of small dis-
turbance theory, there are several approximate
methods that can provide accurate results, often



very simply. Princ%pal among these are the local
lineari%ﬁt}on(38=39 and the parametric differen-
tiation'*0/ methods Since they are not in such an
active stage of development, no general description
will be provided; although their results will be
displayed for comparison.

We turn now to the results provided by all of
the methods discussed. Figure 1 presents pressure
distributions for an 18-percent thick circular-arc
airfoil as measured 1) and as calculated by
Diewert( s13) for both inviscid and viscous flow

_ e Inviscid
M =.775 v

Re = 2X10°

Fig. 1.- Pressure distributions for thick
circular-arc airfoil.

by application of the finite volume method to

Eq. (1). The inviscid solution agrees well with
experiment over the forward half of the airfoil,
but is inaccurate in predicting shock strength
and location, and the pressure level near the
trailing edge. When the aft pressure recovery is
strong, as for Reynolds number, Re = 2X106, the
viscous solution agrees well with experiment.
When the aft pressure recovery is weak, the theo-
retical results disagree, probably because of in-
adequate turbulent modeling in the separated
region. At the present time, these are the most
complete comparisons between viscous theory and
experiment; the differences should be remembered
in evaluating subsequent comparisons between
inviscid theory and experiment.

Figure 2 presents a comparison of exact and
approximate solutions for steady inviscid shock-
free transonic flow past two different supercriti-
cal airfoils'10), It shows that results obtained

NLR Quasi-elliptical Garabedian-Korn
airfoil airfoil

T=,12 T=, 12

M, = 756 ud
c 0 8 : n " o : : & $ " -
P x/c 1.0 x/c 1.0
Full potential Full potential
5 Hod: a C, = ,254 — N
0 Ty x==
- R:!ta:{?;;gn, Cp,=.255, C,=.63, a=0
A - --Relaxation, M_=.75,
1.0¢ small disturbance - Cp=.63, a="12°
- "g’-_"{‘g%%"' Cp ™. 242, Small disturbance

1.5 L ~-—Relaxation, M_ =.76,
CL=.62, a=.12°

Fig. 2.~ Theoretical shock-free pressure
distributions for two supercritical airfoils.

by application of finite difference relaxation
methods (42>43) o the comﬁlete potential Eq. (6),
and the hodograph method(43,44) to its counter-
part Eq. (10), are virtually identical; and,
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furthermore, that the transonic small disturbance
Eq. (7) 5 can provide results of outstanding
accuracy, a conclusion long evident from early
studies (3)

(9)

Figure 3 from Ballhaus shows pressure distri-
butions for transonic flow with embedded shock wave
for an NACA 6LA4IC airfoil calculated by application

o-~0 Small disturbance

Euler

m= 1,69

Fig. 3.- Exact and approximate transonic pressure
distributions for an NACA 64AkLO airfoil at
two angles of attack, M_ = 0.72.

of the time-dependent method(15’21’22) to the Euler
Egs. (5) for isentropic flow and of the finite
difference relaxation method to the small distur-
bance Eq. (7). Two versions of the latter are
shown distinguished by the value of m in

k = Mi(y+1)/Us. The upper plots are for m = 2,
in wide use for many years . To improve accuracy
without complication Krupp has proposed several
other values for m, each of which has certain
desirable properties such as the accuracy of the
approximation for the shock jumps or the critical
pressure coefficient, C¥. Among these values is
m=1.69 used in the lower plots of Fig. 3. The
results illustrate the dilemma encountered in such
efforts. The results for m = 1.69 are superior
for angle of attack, ¢ = 0, but those for m = 2
are better for o = 2°. To us, it seems preferable
to use m = 2 for most applications, reserving
other values for restricted classes of applications
that emphasize a particular feature of the flow
that can be better represented by another value

for m.

As noted above, significant differences occur
for the vicinity of a shock wave depending on
whether the finite differencing is done with the
FCR or NCR procedures. These are illustrated in
Fig. 4 for a nonlifting 6-percent thick circular-
arc airfoil at two different values for M,'2T).



-8 My = .872 - M= _909 FCR

Re = 2Xx10°

0 e 1.0 0 /e
Fig. 4.~ Supercritical pressure distributions for
a thin circular-arc airfoil indicated by the FCR
and NCR solutions of the transonic small distur-
bance equations, by the finite volume solution
of the Euler equations, and by experiment.

Away from the shock wave, the results are in agree-
ment, but near the shock wave they are quite dif-
ferent. In particular, the NCR shock pressure jump
does not approach the theoretical normal shock
Jump; whereas the FCR solution shows not only that
the correct condition is attained but that the
shock is followed by a well-defined reexpansion,
as is proper. The FCR solution also indicates a
more downstream location for the shock wave than
the NCR solution. Superposed on the results for
M, = 0.909 are experimental data(18) and a finite
volume solution{l%) of the Euler Egs. (2). This
comparison confirms that the FCR shock location
agrees better with the exact inviscid location
than the NCR locations; although the latter agree
better with experiment. This paradox can be re-
solved by reference to Fig. 1 in which it is illus-—
trated how viscous effects lead to a more upstream
location of an embedded shock than indicated by
inviscid theory. In addition to the differences
in the surface pressures illustrated in Fig. U4,
Newman and South{49) have shown that the stream-
lines downstream of the shock are displaced out-

~ ward substantially and erroneously by the NCR
method because of spurious mass addition at the
shock. The FCR method avoids this deficiency by
satisfying mass conservation everywhere.

Analogous results for the same airfoil in a
slightly supersonic stream with M = 1.15 are
shown in Fig. 5(10,2T). fThe calculations were
performed using the two relaxation methods and also
a finite-difference solution of the Euler Eqs.(5) by
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Fig. 5.~ Pressure distributions and bow wave loca-
tions for a thin circular-are airfoil indicated
by FCR and NCR solutions of the transonic small

disturbance equations, and an Euler solution.

a time-~dependent method(5°), which is fully conser-
vative. All three methods indicate essentially the
same pressure distribution on the airfoil, but the
NCR method again indicates a location for the shock
wave, this time detached, that is too far forward.

Although the integral equation method has been
partially eclipsed by the hodograph and relaxation
methods, recent reevaluations(33,36,37) indicate
that it has considerable merit. Figure 6 shows
pressure distributions for a 6-percent thick

M, .83
-. 4 c’ - -\‘
*

AN - |
C i Linear [

P !

0 + + 4 + + +
x/c 1.0 x/c 1.¢C
FCR \
e FCR .—---Mw'.870
© Integral eq., M, =.873
.4- Kraft - Integral eq.

0 Kraft, M,=.873

—-—Nixon, M, =. 870

Fig. 6.~ Pressure distributions for a 6-percent
thick circular-arc airfoil indicated by integral
equation and FCR solutions of the transonic
small disturbance equation.

circular-arc airfoil calculated using two versions
of the integral equation method and the small dis-
turbance FCR finite difference method. The results
of Kraft(36) have been determined using a velocity
profile to reduce the doublet integral to a single
integral and iterating in the manner of Spreiter
and Alksne(32). Those of Nixon(51) have been cal-
culated using his extended integral equation method
in which the doublet integral is evaluated by divid-
ing the region of integration into a number of
streamwise strips across which interpolation func-
tions are used to express values for the integrand
in terms of values along the strip edges. Similar
results for the critical Mach number have also been
determined by Oganal37) who divided the region of
integration into a large number of rectangles and
evaluated the integral by quadrature at each step
of an iteration process.

Corresponding results for a NACA 0012 airfoil
are presented in Fig. 7 together with an essentially

. M, = 72
-.8} «
CP
-4k
C {
P
0 S
x/c , 1.0 1.0
\ -—— FCR, = ,818
e FCR \ e
Integral eq.
-~ Euler o Kraft 818
4ar 0 Integral eq., Kraft aft, Mo=.
——-Nixon, M_=.8l6

Fig. T.- Pressure distributions for an NACA 0012
airfoil indicated by integral equation and FCR
solutions of the transonic small disturbance

equations, and by a numerical solution of
the Euler equations.



exact solution of the Euler Egs. (4)(52) for the
subcritical case. The x '/? singularity in uj
that would be present if the usual thin-airfoil
boundary condition Eq. (8) were employed has been
avoided in the integral equation results of Fig. T
by using Eq. (14) for the boundary condition.
Aside from modest differences near the shock, the
integral equation results are virtually identical
to those of the finite difference relaxation
method and obtained with considerably less
computation.

Attention is turned now to unsteady flow.
Fig. 8 presents pressure distributions for an
NACA 64ALI0 airfoil oscillating in pitch about a
mean angle of attack of 2° in a flow with

-2.0 T T T T . . :
0° - 4°
~l.61 k=0 ]
-1.2 -1 b |
e e
LR
P

Fig. 8.- Time-dependent solution of Euler Eq. (5)
for the pressure distribution on an NACA 6hkAkl0
airfoil oscillating in pitch.

Mo = 0.72, as calculated by Magnus and Yoshihara
(21) using a time-dependent method to solve the
Euler Egs. (3). For the three smallest reduced
frequencies k = wc/2U,, the amplitude is 2°;
but it is only 0.4° for k = 2.5. For each fre-
quency, the pressure distributions on the upper
and lower surfaces are shown for the minimum and
maximum angles, and for the angle of attack both
increasing and decreasing through the mean. At
even the smallest frequency, k = 0.1, the results
differ distinctly from those of quasi-stationary
theory (k = 0). As k increases, the amplitude
of the pressure variafions diminishes, and the
shock movement virtually vanishes for k = 2.5.
The latter may be of importance to those devel-
oping approximate theories, since it suggests
that shock movement may be disregarded for high
frequency oscillations.
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The results just described are of great theo-
retical significance; however, their computing cost
is too high for the engineering analysis of aero-
elastic and flutter problems which requires a large
number of cases to be considered individually since
solutions cannot be superposed. Simplification
may be achieved by turning to the small disturbance
theory for unsteady transonic flow, but the need to
consider every case separately remains since Eq.(7)
is nonlinear. For many applications, it is fruit-
ful to decompose the problem into steady and
unsteady components by letting

=3+ Z2=%+%Z, C =C +C (15)
$=9¢+9¢, s = % o
where the barred quantities satisfy Egs. (T)
through (9) with the time derivatives omitted. The
remaining unsteady quantities should satisfy
- - PV ~
- - +
(l M°°)¢XX k(¢x¢xx+¢xx¢x+¢x¢xx) ¢)ZZ
M2 M2
-——¢ -—¢ =0 (16)
U, 'xt u? tt

for the boundary conditions and pressure relation
given by Egs. (8) and (9) with tildes over ¢, 2Z,
and C,, but significant simplification can be
achieved for small amplitude motions of an airfoil
with nonvanishing steady-state disturbance field
by disregarding ¢ydyx to obtain a linear differ-
ential equation for $. Although the dependence
of the variable coefficients §y and $yx, on the
nonlinear steady-state solution makes the equations
more difficult to solve than those of ordinary
linearized theory, G is linearly dependent on the
amplitude of the unsteady motion, and results for
various unsteady motions about a single steady-
state condition can be superposed to determine
solutions for more complicated motions.

Fig. 9 pr?sents results calculated in this way
by Enlers(53) using a finite difference relaxation
method for an NACA 64A006 airfoil at zero angle of
attack with an oscillating flap extending over the
rear quarter chord. The results are qualitatively
similar to the experimental data(5h), but the un-
steady pressures are generally overpredicted.
Traci(55) et al., have confirmed Ehler's results
by application of essentially the same method to
the low frequency counterpart of Eq. (16) in which
¢t+ is omitted in addition to the nonlinear term.
Perhaps the most notable feature of the results is
the unsteady pressure peak at about midchord in the
supercritical example with My, = 0.853 that is
completely unheralded in the results for the sub-
critical example with My = 0.794., The peak at
three-quarter chord is that normally expected at
the hinge line for any subsonic flow., The second
peak in the supercritical case is associated with
the accumulation of receding waves as they move
upstream from the flap until they are slowed and
extensively refracted by the zone of supersonic
flow. The data for Me = 0.90 and 0.96 indicate
that such effects disappear as expected when the
flow upstream of the hinge line becomes supersonic.

Supplementing the development described above
is a search for more economical approgima%e methods.
Notable among these is an ex‘bension(5 »2T) of the
local linearization method developed originally(39)
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Fig. 9.~ Pressure distributions on an NACA 6LA006
airfoil with oscillating flap.

for steady flow. Results for the magnitude,

, and phase, ¢cp, of the unsteady aerodynamic
loaglng at Mo =1 ©n a 6-percent thick circular-
arc airfoil oscillating in pitch about the nose
with ampltidue 6 and various reduced frequencies
k are shown in Fig. 10. Also included are the
results of quasi-stationary theory and linearized
theory to which the local linearization results
converge for small and large Xk. %he similar
results have been obtained by Isogal , Kimble
and Wu 59), and Dowe11(60) through appllcation of
somevwhat different approximations based on the
general notions of the local linearization method.

ITI. Axisymmetric and Related
Slender-Body Flows

Several of the methods developed originally
for two-dimensional flow have been extended to

theory k
(] 0.05
L] 0.50
Local Linearization B 1.00
b 2.50

7T T T T T

T
)3 5

Ks

-5 L L L L

x/c

Fig. 10.- Load distribution on a thin circular-
arc airfoil oscillating in pitch about the nose.

axisymmetric flow. Although some of the analyses
have been based on the more complete theories,
extensions to nonaxisymmetric slender bodies and
wings have been confined almost exclusively to the
small disturbance theory described by

2,

(1-M7 -k o  +o . +¢,, “ T, bxt” =0 (17)

¢tt

) &

together with appropriate boundary conditions, and
a pressure relation modified to include ¢y + ¢z
within the parentheses of Eg. (9).

Figure 11 shows pressure distributions for a
10-percent thick parabolic-arc body of revolution
for several M, from 0.9 to 1.1 calculated usin
the local 11near1zat10n(6 and numerical Ncr(62
methods together with experimental data 63). These
results, and also the previously unpublished FCR
results calculated at NEAR, are in good agreement

-0.2 o* °
-
F* s My = .90
C. o +
P
0.2
-0.2
C
p ° AN
L\
0.2 v\
)
Sting No sting
~=-NCR —— NCR
s Exp. wweLocal linearization
--FCR

Fig. 11.~ Pressure distributions for a parabolic-
arc body of revolution indicated by various
solutions of the small disturbance

equations, and by experiment.
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over most of the body, but notable differences
exist near the rear. Some of these may be attri-
buted to viscous phenomena, but effects of the
cylindrical sting model support and wind tunnel
walls are also significant. To demonstrate the
effects of the sting, NCR results(62 are presented
for a shape that conforms to the test model and
sting combination. The results are in improved
agreement with the data, but significant differ-
ences remain.

To investigate the effects of the walls, Bailey
(62) carried out NCR calculations for the body-
sting combination in a circular wind tunnel having
the same cross-section area relative to the body
as the Ames 1lh-foot wind tunnel where the tests
were conducted. To simulate the ventilated walls
of the test section, calculations were performed
for a porous wall with various porosities. The
results for a porosity of 0.5 are shown in Fig. 12
together with those for free air and for an open

[~ porous %
L wall 4’; @
p
-—-Free | Exp.
air :' « Force balance
B @ Computed from
measured Cp

N 1 T

.8 .9 1.0 L1 1.2 13
Hw

Fig. 12.- Pressure distributions and surface

pressure drag for a parabolic-arc body of

revolution with sting in free air, an open

Jjet, and a wind tunnel with porous walls.

jet. Sedin and Karlsson(éh) have obtained similar
results for the porous wall using their alternat-
ing direction integration method. The theory
indicates that the walls produce an upstream shift
of the shock wave, thereby bringing the calculated
pressure distribution and pressure drag into vir-
tually perfect agreement with the measurements.
Prudence should be exercised in accepting these
results as definitive, however, since the boundary
condition applied at the wall is a highly simpli-
fied representation of a complex local flow.

It has long been known (3) that the solution
for certain thickness-dominated steady transonic
flows past slender wings, bodies, and wing-body
combinations can be decomposed into four simpler
components by use of the transonic equivalence
rule. As illustrated by Fig. 13 with $yt and
f(y,2,3x,t) set to zero, three of these require
solution of only the two-dimensional Laplace equa—
tion for flows in each transverse y,z plane; and
the fourth requires solution of the transonic
small disturbance equation for axisymmetric flow
past an "equivalent" body of revolution having the
same longitudinal distribution of cross-section
area ?s the original aerodynamic shape. Cheng and
Hafez 65) and Barnwell(66) have extended that
result to lift-dominated cases, for which it is
necessary to include additional higher-order
(multipole) inner solutions beyond the first~order
thickness (source) and 1ift (dipole) solutions.
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Fig. 13.~ Schematic representation of unsteady
transonic equivalence rule for slender wing-body
combinations for mildly unsteady motions.

The first-order thickness and 1ift inner solutions
satisfy the two-dimensional lLaplace eqguation; but
the higher-order solutions satisfy Poisson's equa-
tion in which the right-hand side f(y,z;x) is a
function of the lower-order solutions. We have
recently extended the analysis to unsteady flows(57l
arriving at the result portrayed in Fig. 13.

Figure 14 presents results of an application of
the equivalence rule for steady flow with Me =1
to slender bodies with elliptic cross sections and
the same longitudinal distribution of cross-section
area as a parabol%c-arc body of revolution of thick-
ness ratio, 1/12( 7). The solution for the equi=-
valent body was determined using the local

-2
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A 4~ Data Theory ?
S

o

Fig. 14.~ Pressure distributions on two parabolic-
arc bodies of elliptic cross section; M = 1.

linearization method, the only method available at
the time these results were originally published,
and are for free-air flow past a complete body,
i.e., without a sting. After making allowances
for deficiencies over the rear of the body that
can be attributed to effects of wind tunnel walls
and model support, the results show that the equi-
valence rule provides a simple and accurate means
for treating transonic flow past slender bodies of
noncircular cross section.

Figure 15 presents a similar comparison of
theoretical and experimental results for My =1
for one of the elliptic cross—section bodies ?f
Fig. 14 at angles of attack of 2°, 4°, and 6°(67),
Good agreement is again found along most of the
body, with notable differences occurring on the
rear. The latter could be rectified by replacing
the solution for the equivalent body by a solution
like that of Fig. 12 that accounts for effects of
the model support and wind-tunnel walls.

In contrast to the foregoing, the development
of methods for solving the norlinear equations for
unsteady axisymmetric and three-dimensional tran-
sonic flows has barely begun. We have applied the
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Fig. 15.- Pressure distributions on the body
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local linearization method to flow with M, =1
past a slender body of revolution engaged in a
variety of unsteady motions. Fig. 16 reproduces
results(57:68) for the amplitude and phase of the
surface pressures on a nonlifting body undergoing

=3 T T T T Y
-2 t=0.12 r
0.10
0.08

Steady
-———Unsteady,
k=0

Fig. 16.- Local linearization solution for
pressures on the forepart of a parabolic-arc
body of revolution in oscillatory dilatation

proportional to the locsal body radius;
T=0.10, M = 1.

small oscillatory dilatations proportional to the
local body radius. As in the two-dimensional
applications, the results approach those of lin-
earized theory for high frequency oscillations,

and quasi-stationary theory for low frequencies.
The latter is illustrated in the plot in the upper
right in which the pressure distributions indicated
by the unsteady analysis for a basic body of thick-
ness ratio, T = 0.10, undergoing slow expansion

to T = 0.12 and contraction to T = 0.08 are

shown to agree with local linearization solutions
for steady flow past three such bodies. Extension
of the local linearization analysis to the pitching
motion of slender bodies of revolution at My =1
has been carried out recently 9) and used to deter-
mine unsteady surface pressures and static and
dynamic stability derivatives for conical and para-
bolic-are bodies. The results are presented to-
gether with those of other approximate theories and
are shown to agree well with available data.

Three-Dimensional Flows Past Wings
and Wing-Body Combinations

Iv.

Much can be learned by the study of two-dimen-
sional and slender-body flows, but rational aircraft
design requires solutions for three-dimensional
aerodynamic configurations. Fortunately, the finite
difference relaxation method can be generalized to
these situations, and modern computers are able to
perform the computations in an acceptable time for
steady flows past certain classes of three-dimen-
sional shapes. To date, the analysis has been
based almost exclusively on the small disturbance
theory, which in its simplest form is described
by Eq. 17 with ¢, and ¢4 omitted.

Figures 17 and 18 present comparisons of calcu-
lated and experimental data for a swept ONERA M6
wing at an angle of attack of 3° for M_= 0.8l

Exp.
o
L 4

Theory
—— FCR

Upper surface
Lower surface ~

AR = 3,86

TR = 0,583
ONERA D section
T=9,8%

Pig. 17.- Pressure distributions on a swept ONERA
M6 wing; M_ = 0.84, o = 3°.

and 0.93(T0), Computations were performed using
both the NCR and FCR methods and required about

5 CPU minutes on the CDC 7600 computer. As in the
two-dimensional applications, the FCR method pre-
dicts a more downstream location for the shock wave
than the NCR method, with the difference being more
marked at the higher Mach number. Again, the data
agree better with the NCR calculations, but this

is certainly due to a fortuitous cancellation of
errors in the shock jumps by disregarded viscous
effects.

The experimental data also reveal a weak oblique
shock upstream of the main shock and swept back
about 35°, but no indication of it is given by the
calculations. This is to be expected because
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Fig. 18.- Pressure distributions on a swept
ONERA M6 wing; M_ = 0.93, a = 3°.

Eq. (17) provides a poor approximation for shocks
with sweep angles greater than about 20°. A sub-
stantial improvement can be made, however, b
adding two terms to Eq. (17) to obtain(10,71
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U, vy
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for steady transonic flow. Studies of this and
related extensions of the small disturbance theory
are currently in progress. Moving closer to a
complete airplane configuration, Fig. 19 presents
experimental and NCR calculated pressures for a

(18)

Fig. 19.- Pressure distribution on a wing-body
combination; M_ = 0.93, o = 0°.~

swept—win%-fuselage configuration at M, = 0.93
and 0=0°(T0), The agreement with experiment is
good along the fuselage centerline and the two in~
board stations. In the computed results, the wing
root shock propagates laterally to y/s = 0.60,
but the experimental shock dissipates before
reaching this point. The source of the disagree-
ment is not clear but may be due to viscous
effects or to deficiencies associated with swept
shock waves.
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As an alternative to the finite difference
approach to three-dimensional transonic flow anal-
ysis, mention should be made of the alternating
direction integration method of Sedin and Karlsson

, which has recently been shown to be capable
of providing plausible pressure distributions on
wings and wing-bcdy combinations. Further investi-
gation of the accuracy and computational require-
ments of the method is necessary to determine its
competitiveness with the finite difference methods.

V. Helicopter Rotors

The onset of transonic flow over the outer por-
tion of the rotor blades is one of the primary
conditions that sets the performance limits of
modern helicopters. A transonic regime near a
blade tip is inherently nonlinear, three-dimensional
and, with forward flight, unsteady. As illustrated
in Fig. 20{9), the shock on the upper surface moves
downstream at points B and C, is nearly stationary
at D, and moves upstream at E. BSubsequently, the

M, =,747, a=,880° ~—-— Quasi-steady M_=.841, a=,1°

Unsteady
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Fig. 20.- Pressure distributions for a simulated
two~dimensional helicopter rotor.

shock propagates off the front of the airfoil into
the oncoming flow. In the calculation of the theo-
retical results of Fig. 20, the unsteady motion of
the rotor blade in forward flight was simulated by
an NACA 0012 airfoil undergoing simultaneous sinu-
soidal Mach number and incidence variations with a
phase difference of 180°. The governing equation
is a two-dimensional low frequency version of
Eq. (17) with ¢yy and ¢y omitted and with

+ M_sin ¥, which represents the instantaneous
free-stream Mach number, in place of M_  in the
coefficients of ¢,y and ¢, and the boundary
conditions. The quantity Mp is the tip Mach
number due to rotation,andy = Qt is the indicated
azimuth angle on the rotor disk. The quasi-steady
results were computed by solving the same equation
with ¢yy = O, so that time appeared only as a
parameter. The shaded region indicates the portion
of the cycle for which the flow is subcritical, and
for which the unsteady values for the pressures are
nearly gquasi-steady. In the supercritical region,
however, the pressures and shock wave location lag
the guasi-steady results.



The results of Fig. 20 correspond to strip
theory, but three-dimensional effects are obviously
important for a helicopter rotor, particularly near
the tip. Caradonna and Isom{72) have investigated
this feature of rotor aerodynamics, and calculated
unsteady FCR solutions reproduced in Fig. 21 for
both two- and three-dimensional representations.

2-Dimensions
¥ = 166°

158° —

[ 2%500
14
P g, 130 7Y

3-Dimensions

N

Fig. 21.- Two- and three-dimensional calculations
of pressure distributions for several ¢ at 97.7
percent of the rotor radius with blades of aspect
ratio = 15 and 6-percent thick circular-arc pro-
files operating with an advance ratio, U;/QR = 0.b,
and a tip Mach number, Mp = 0.93, at ¢ = 90°.

Comparison shows that the three-dimensional solu-
tion indicates that the flow is far less expanded
(the peak negative C, is less in the supersonic
region and the shock wave does not reach the
trailing edge), the return to subsonic flow occurs
earlier, and no upstream propagating wave is indi-
cated for this case. Caradonna and Isom state
that such a wave is seen in their results for a
higher Mach number three-dimensional calculation,
but its amplitude is about an order of magnitude
less than indicated by the two~dimensional calcu-
lation. This brief account serves to indicate
that helicopter aserodynamics provides a new field
of application for transonic flow theory. The
available results are very incomplete, but they
illustrate the significance of transonic flow for
helicopter rotors, and the need for a more
comprehensive study.

VI. Rotating Turbomachinery

Flow through a high-speed fan or compressor is
three dimensional, can include complex shock
systems, and is unsteady even in a rotating frame
of reference if a complete stage consisting of a
rotor and stator or a fan preceded by inlet guide
vanes is considered. Effects of viscosity and
turbulence are important, particularly in the aft
stages, and impact of the wake of one stage on the
blades of the next is an important source of vibra-
tion and noise. The calculation of transonic flow
through high-speed turbomachinery must be one of
the most formidable problems in aerodynamics, but
the technological need exists and methods are
beginning to be developed.

In current work, the traditional approach is
taken in which the inviscid flow field is consid-
ered first, leaving the viscous and turbulence
effects to be added later, hopefully as small or
localized perturbations. Since variations of
pressure and flow direction may be substantial,
the small disturbance theory is not expected to
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be as useful as it is for the external aerodynamics
of the airplane. The appropriate equations for
the inviscid analysis are, therefore, the Euler
equations, or possibly the complete potential
equation if the shock waves are not too strong.

In the most advanced analysis, Erdos et al., 13)
have approximated the three-dimensional problem

by a pair of two-dimensional problems, which are
intended ultimately to be interacted to obtain the
complete solution. Figure 22 presents the essen-

tial ideas of this decomposition and of the

Fig. 22.-~ Coordinate systems and grid networks
for interacting two-dimensional flows used to
simulate three-dimensional flow through a
rotor-stator stage of a turbomachine.

coordinate system evolved from it. The hub-to-
casing solution accounts for effects of blockage
of the flow area by the blades and the anticipated
boundary layer as well as the geometry of the hub
and casing, but not for any circumferential varia-
tions of the flow. It provides the flow properties
in a meridional plane as averaged from one blade to
the next, the coordinates R = r(m) of the curved
axisymmetric stream surface upon which the blade-
to-blade analysis is carried out, and thereby the
spacing b(m) between two arbitrarily selected
adjacent stream surfaces. The problem that must
be solved for the blade-to-blade surface represents,
therefore, a two-dimensional flow past a series of
blades in the curvilinear coordinate system (m,0)
indicated in Fig. 22 with the radius, R(m), and
thickness, b(m), of the stream sheet provided by
the solution of the hub-to-casing solution.
Expressed in a coordinate system rotating with

the blades at an angular velocity Q so as to
obtain a steady flow problem if interaction with
other blade rows is disregarded, the equations to
be solved are

2 , 3pv) . 3(pu) _ _ pU d(Rb)
3t~ RIO am Rb  am

aov) , Ap+pV?) . 3(pUV) _ _ pUV d(Rb)
at R3O om Rb dm
- U &
R (v +20R) e

3(pv) , 3(pwv) , Ap+pu?) _ _ oU® a(Rb)
at ROB om Rb  dm

+ (V+AR)? R
R an



8(oEr) . B(QVHr) . a(pUHr) _ pUH

t R906 3m Rb

a(Rb)
i (19)

where U and V represent velocity components in
the m and © directions, and in which the rela-
tive total energy and total enthalpy are defined
by

= H - VOR

Er = E - ViR, Hr (20)

The right-hand sides of Eq. (19), which differ
from those of Erdos et al.{T3) because of correc-
tion of errors in the transformation to curvi-
linear coordinates, arise from streamwise varia-
tions of thickness and radius of the stream sheet;
they vanish if the equations are applied to a two-
dimensional cascade flow. The corresponding
equations for a nonrotating inertial system may
be obtained by setting Q to zero.

Only a few results obtained by solving these
equations have been reported, and they are rather
provisional because of the relstively small number
of grid points used in the finite difference
calculations. Results of blade-to-blade calcu-
lations of Erdos et al.,(73) are presented in
Fig. 23 together with experimental data for a
high-speed (1500-fps) fan tip section obtained

nanAG
1

Experimental
iscbars

Fig. 23.-~ Experimental and calculated pressure
distributions for flow through a 1500-fps rotor.

from an array of fast response pressure gages
mounted on the casing wall. The test fan was
preceded by a set of guide vanes and followed by
a row of stators, but the unsteady interactions
were neglected in the calculations and only the
effects of the rotor was considered. Although
the grid network was very coarse, the calculated
flow bears a recognizable resemblance to the ob-
servations, particularly the indications of an
obligue shock from the leading edge of the upper
blade that reflects off the lower blade and reim-
pinges on the upper blade near the trailing edge.
These developments give promise of substantial
improvements in predictive capabilities for the
design and analysis of high-speed turbomachinery.
The flows are very complex, however, and continued
effort will be required for some time before
accurate and economical methods will be available
for the routine solution of these problems.

1

VII. Concluding Remarks

The preceding discussion has provided a review
of recent developments in steady and unsteady
transonic aerodynamics. Many references are cited;
but many significant contributions are not, or are
hidden in references to summary papers. In many
instances, the sclection has been made on the basis
of interlocking relations that help to evaluate the
various results, and to provide a continuing base
from which further discussion can proceed smoothly.

Overall, it is clear that tremendous advances
are being made in the analysig of transonic flows,
and that these problems no longer appear as for-
midable as they once d4id. Indeed, some of the
simpler two-dimensional and axisymmetric steady
flows may be considered solved, with even alter-
native methods available to choose among. The
research frontier is moving now to more complex
steady and unsteady three-dimensional flows past
wings, wing-body combinations, helicopter rotors,
and through turbomachinery fans and compressors.
The modern computer has brought immense calculating
power to bear on these problems, and the goal of
replacing the wind tunnel with a computer is
beginning to look more achievable than ever before.
However, all will not fall into place by itself.
Much work must be done, but the directions are
indicated and the rewards of improved aerodynamic
design and analysis are sufficient to demand the
effort be made.
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